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Abstract

A new mathematical technique for the adaptation of the results of numerical wave
prediction models to local conditions is proposed in this work. The main aim is to reduce the
systematic part of the prediction error in the direct model outputs by taking advantage of the
availability of local measurements in the area of interest. The methodology is based on a
combination of two different statistical tools: Kolmogorov-Zurbenko (KZ) and Kalman filters. The
first smoothes appropriately the observation time series as well as that of model direct outputs so
to be comparable via a Kalman filter. This is not the case in general, since forecasted values are
smoothed spatially and temporarily by the model itself while observations are point records where
no smoothing procedure is applied. The direct application of a Kalman filter to such qualitatively
different series may lead to serious instabilities of the method and discontinuities in the results.
The proper utilization of KZ-filters turn the two series into a compatible mode and, therefore,
makes possible the exploitation of Kalman filters for the identification and subtraction of
systematic errors. The proposed method was tested in an open sea area for significant wave

height forecasts using the wave model WAM and six buoys as observational stations.
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1. Introduction

The need of accurate local wave predictions has seriously increased during the last few
years due to several affected activities such as ship traffic, tourism, offshore exploration, etc. The
most reliable tools today towards such forecasts are the numerical wave predictions models. A
large number of operational and research centers worldwide base their predictions on global or
regional wave models with rather successful results concerning the general sea state forecast.
However, if one focuses on specific locations and tries to obtain accurate local wave information,
serious and systematic divergences are usually revealed. These divergences are mainly due to the
fact that wave model outputs are strongly dependent on local characteristics, initial conditions, as
well as the corresponding atmospheric data used as input. On the other hand, numerical models
cannot simulate successfully sub-grid scale phenomena. Similar drawbacks have been also pointed
out in numerical forecasting of atmospheric parameters.

In order to reduce the impact of the abovementioned problems to the final outputs of the
forecasting systems, a variety of approaches have been employed. One possible way out is to
increase the model resolution. This may lead to some improvement in the representation of
smaller scale wave characteristics. However, such a change would also demand the corresponding
increase of the resolution of the atmospheric model that is used to provide the necessary wind
input. It would be meaningful otherwise since all wave models used today are wind driven with
the wind input being the most crucial component. On the other hand, it remains an open question
whether the use of higher resolution models improves forecast skill or whether potential
improvement compensates for the increase in computational resources required (see e.g. [16]).

An alternative option for the improvement of the local forecasts in numerical (wave or
atmospheric) forecasting is also provided by statistical methods aiming at the local adaptation of

the direct model outputs. Many of them are derived from Model Output Statistics (MOS), which



are able to account for local effects and seasonal changes. However, discrepancies have been
found in such applications in cases of short time local weather changes or updates of the
numerical model in use (see e.g. [10, 15]).

An alternative approach with excellent results in many previous studies for different
forecasted parameters is the use of Kalman filtering [1, 3, 6, 7, 11, 12, 13, 17]. The Kalman filter
consists of a set of mathematical equations that provides an efficient computational solution of
the least square method. Observations are recursively combined with recent forecasts using
weights that minimize the corresponding biases. The main advantage of Kalman filters is the easy
adaptation to any alteration of the observations as well as the fact that only short series of
background information are needed. However, even by the use of this more dynamic
methodology a number of problems remain unsolved leading to serious divergences. The main
reason is that the two time series used as input to Kalman filters, the model forecasts and the
corresponding observed values, are of different qualitative characteristics. Model outputs are
always smoothed in time and space having, therefore, a continuous and mild evolution. On the
other hand, observations are point measurements recorded at discrete times without smoothing
and are therefore discontinuous and highly variable (see fig. 3). As a result, the direct utilization of
such time series by a Kalman filter may lead to serious instabilities. Such a case is discussed in
Section 4 and has been visualized in Figure 4.

In this work a new methodology is proposed that responds quite successfully to the above
mentioned difficulties and leads to a considerable improvement of the local wave forecast. It
consists of a combination of Kolmogorov-Zurbenko (KZ) filters [5, 18] with Kalman algorithms. The
former is applied to the initial recorded observations and to models direct outputs, smoothing any
possible high variability and reducing noisy intervals. The percentage of the removed variability

can be controlled by an appropriate choice of filter parameters. In this way, the above mentioned



different quality characteristics of the time series in study are eased. On the other hand, possible
systematic deviations are clearly revealed. In a second step, the KZ-filtered results are input to a
Kalman filter, which can be applied smoothly with no instabilities, leading to a very satisfactory

adaptation of the forecasts to local area’s characteristics.

2. Model Description

The wave model used in this paper is WAM cycle 4 ([2, 8, 10, 14, 19]) developed in the
European Centre for Medium-Range Weather Forecasts (ECMWF). WAM is a third generation
wave model which solves the wave transport equation explicitly without any assumptions on the
shape of the wave spectrum. It represents the physics of wave evolution in accordance with our
knowledge today for the full set of degrees of freedom of a 2 dimensional wave spectrum.

The first statistical tool employed is a Kolmogorov-Zurbenko (KZ) filter. A detailed
presentation of the philosophy and the way of using such type of filters can be found in [5, 18].

They are based on iterative moving averages and are able to remove high frequency variations
from the initial data. To be more precise, if we denote by (Xio)i the initial values of a series, the

first iteration of the filter smoothes them as follows:

q

1
¢ = i (1)

j=a

Here, parameter g designates the length of the filter window which is m=2g+1. In the next step,

q
Z Xil+j , and so on. The
2q+1;

J=-q

these values (Xil)i become the input for the second iteration: Xi2 =

parameter m and the number of iterations (n) control the portion of the variability that one wants
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to exclude. In particular, the desired separating frequency is wy = "'T I.m'--?'—'-'--‘"m ([5, 18]).
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It worth to notice that, in the present work, the KZ-filter is not utilized within the forecasting
period. It is only applied to past observations and model results in order to ease possible
qualitative differences and transform them to a comparable mode.

The KZ-smoothed time series form the initial data for Kalman filtering. In order to make the
paper as self-contained as possible, a detailed description of the general form of the Kalman filter
algorithm, based on the unified notation proposed by [9], follows.

Kalman filters simulate the evolution in time of an unknown process (state vector), whose

“true” value at time t; is denoted here by X' (t.). This is combined with a corresponding known

array (observations) yi° which refers to the same time. The change of x in time is governed by the
system equation:

X' () = My [X' (t )]+ (8 ) 2
The observation equation describes the relation between the observation vector and the unknown

one:
°—-H [Xt (t)]+ 3

Yi =h, i) Té&. (3)

The matrices |\/|i (system operator), Hi (observation operator) as well as the covariance matrices

Q(t), R(t) of the Gaussian (by assumption) and independent random vectors 7(t;), &,

respectively, have to be determined before the application of the filter.

The first forecast step of the state vector x and its error covariance matrix P is given by:
X' () =My [ (6], (4a)
P’ (ti) = Mi—lpa (ti—l)MiT—l + Q(ti—l) . (4b)
This is followed up by an update (analysis) step in which the observation available at time t;is

combined with the previous information:

X(t) =X (&) + K (7 — H[X" @)D, (5a)



P*(t)=(1 - KH)P' (t) (5b)
Here

K =P (t)H] [HP' (()H +R]1” (6)
is the Kalman gain that arranges how easily the filter adjusts to possible new conditions. The
superscripts o, t, f, a denote observations, true, forecast and analysis value correspondingly.

Moreover, T and -1 stand for the transpose and the inverse matrices, respectively, while / is the

unitary matrix. Equations (2)-(6) update the Kalman algorithm from time t;; to t;.

3. The case studied

For the present work, a global version of the WAM model was utilized. The wave spectrum
was descritized in bands of 30 frequencies and 24 directions. The first integration frequency was
determined to 0.0417 Hz and the propagation time step to 300 seconds. The model ran in a deep
water mode with no refraction. WAM was driven by NCEP/GFS model wind data with horizontal
grid resolution 1.0x1.0 degree.

The area of study was that of southwest cost of United States as presented in fig. 1. In the
same map, the locations of the buoys used as observational sources are indicated. All of them
belong to NOAA/National Data Buoy Center network and their exact positions in Lat-Lon
coordinates are declared in Table 1. It should be noted that, since these locations do not coincide

with WAM grid points, the corresponding forecasts have been interpolated to them.

**%%* Desired Location of Figure 1 ********

***** Desired Location of Table 1 ********



A KZ(m=5,n=5) filter was employed which is equivalent to a cutoff frequency of 0.0411 or
24.3 time steps (see the corresponding criterion presented in Section 2 as well as the relevant
references [5, 18]).

Concerning the Kalman filter used, a brief description follows: A single forecasted
parameter in time was utilized: the significant wave height (swh). The corresponding bias is
estimated as a polynomial of the forecasting model direct output. This choice has been already
used in previous applications of Kalman filtering for other meteorological parameters
(temperature [6], wind speed [7]) resulting to the considerable reduction of the systematic error.

To be more precise, let swh; denote the direct output of the model at time t. Then, the
corresponding bias yi° is estimated by means of swh; in a linear form :

Yio = 8y; +a; -SwWh +¢ (7)
The coefficients (a,;, &;) are the parameters that have to be estimated by the filter while &; is
the Gaussian, non systematic, error of the procedure.

In this way, the state vector of the filter becomes X(t,) = [am a; ]T , the observation is

the (scalar) bias Y, the observation matrix takes the form H, = [1 SWhi] and as system matrix
the identity /, is used. Therefore, the system and observation equations take the following form:

X' (tg) =X ) +7@), ¥ =HIX')]+s (8)

The initial value of the state vector x is zero, assuming, in this way, that the initial bias of

the forecasting model is non-systematic: yg’ =&, (equations 7, 8). The covariance matrix P

(equation 4b) is considered initially diagonal, indicating no correlations between different

coordinates of the state vector x. The diagonal elements have an initially relatively large value,

4
here we propose P(t,) =( 4), that declares low credibility of the first guess. The initial values
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of the variances Q(t;), R(t;) (equations 4b, 6) are Q(to)=/,, R(to)=6 (a sufficiently large estimation
leading to quick independence from initial conditions). The selection of the above values, leads
also to an initial Kalman gain that contributes to the fast adaptability of the filter to possible new
conditions (equation 6).

The subsequent values of Q(t;) and R(t;) are based on the sample of the last 7 values of

nt)=x"(t ) -x'(t) and & =y —H,[X"(t)] respectively:

Z (X' (t.,) = X' (1))

Q) =5 > (K ) - X ) - (F—— DY, (©)
1 & Z(Yio - Hi[xt(ti )])
RE) =2 (O - HIX O - (F—— D)2, (10)

These are objective estimators of Q(t;), R(t;) respectively due to the fact that the variables 7(t;)

and g, denote the non-systematic part of errors in equations (8) and follow the normal
distribution.

The time period of 7 time steps was chosen after a sensitivity analysis that has been made
for different meteorological parameters and led to the conclusion that this short time interval is
adequate to obtain significantly improved forecasts with the application of the filter (for the
relevant tests see [7]). On the other hand, this choice allows fast adaptability to possible data
alternations and does not create needs for extended data storage.

It worth also noting that this study was based on an operational run. More specifically, all
the models were used iteratively and the observations of each day d were combined with model
forecasts for the same day d and the next one d+1 so to achieve a Kalman-filter forecast for day
d+1 (figure 2a). These new forecasts were evaluated against the observations of the new day d+1
when these were available (fig 2b). In this way, it was ensured that the evaluation data were not

mixed with those used for forecasting.

***%* Desired Location of Figure 2 *******x*

The statistical analysis was based on the following parameters:



= Bias of forecasted (filtered or not) values:

k

Bias:%-Z( for (i) — obs(i)) (11)

i=1
Here obs(i) denotes the recorded (observed) value at time i, for(i) the respective forecast
(direct model output or improved forecast via the proposed filter) and k the size of the
sample. Bias is the most crucial parameter for any type of filtering procedure since they all
aim at eliminating the standard error.

= Mean Average Percentage Error :

1 & for(i) —obs(i)|
MAPE—k Zl‘ o) | (12)

where | | stands for the absolute value. This parameter measures the divergence of the

forecasts as a proportion of the observations.

= Root Mean Square Error:

RMSE = \/%zk:( for (i) — obs(i))’ (13)

a classical and widely used divergence measure.

4. Results
As already discussed in the previous sections, one of the main problems in numerical wave
forecasting is the difficulty in providing accurate local predictions which are crucial for several
applications. A main and popular tool to encounter this issue is the Kalman filter which provides
fast and accurate adaptation to local conditions by recursively combining direct model outputs
with recent corresponding observations (see Sections 2, 3). However, an aspect that should be
seriously taken into account when using Kalman filter post-processing is the prerequisite

demanding the time series employed be of the same qualitative characteristics. Kalman filters may



detect and subtract possible systematic error that emerges between model and observation time
series no matter its magnitude or type (underestimation or overestimation). However, both series
used have to follow a “similar”, qualitatively speaking, evolution in time. Filtering a smooth and
continuous time series by using a corresponding noisy one with increased variability and
discontinuities is risky and may lead to serious instabilities in the corresponding results. A relevant
example is presented in Figure 3:
**%** Desired Location of Figure 3 ****¥***
The time series of significant wave height values as forecasted by WAM and the corresponding
buoy A and E records are plotted. It is obvious in both cases that, although the model follows the
general pattern of the observations, the two time series are of totally different qualitative
characteristics. The prediction model outputs are much smoother and continuous than the
observations something expected since WAM forecasts, as any numerical prediction model
results, are smoothed in time and space. On the other hand, the buoy time series are point
records with no smoothing procedure applied. Therefore, although a systematic error is almost
obvious, if one tries to pass these time series through a Kalman filter, the latter being unable to
compare them in an appropriate way, produces filtered values with serious instabilities, setting
under question its validity. In figures 4a and 4b a relevant example is presented.
***%* Desired Location of Figures 4a and 4b ****%***

Two time series of different qualitative characteristics (fig. 4a) are filtered by a linear Kalman
algorithm. Several moderate or major instabilities emerge (fig. 4b).

In order to further clarify this argument, a variability index is presented in Table 2 for both
model forecasts and observations. This index measures the “distance” of the initial values

(x(i))i=1,2,..,n from their corresponding KZ-filter counterparts (y(i))i-1,2,..n and is calculated as follows:
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=
Var(x) = ﬁlszc_jqxw — P (14)

It is a rather similar index to the well known Root Mean Square Error measuring the divergence of
the time series in study from the corresponding KZ-filtered values instead of their mean.

**¥%* Desired Location of Table 2 ********
In all cases the variability of the observations are on average more than double the corresponding
model predictions. It is important to underline that this is not a strange or extreme situation.
However, it is a serious problem if one wants to filter these time series through a Kalman process
in order to extract possible systematic error.

A way out of the above difficulties can be given by the use of Kolmogorov-Zurbenko (KZ)
filters presented in Sections 2 and 3. If the two time series of interest, WAM predictions and the
corresponding observation records, pass through such a filter, then the high frequencies and the
undesired variances are subtracted. In Figure 5, the time series of Figure 3 are presented after the
application of a KZ-filter.

***** Desired Location of Figure 5 ********
It is obvious that the resulting time series have much more similar qualitative characteristics while
the existing systematic divergence between forecasts and observations becomes more evident.
Therefore, these time series are more appropriate to be utilized by a Kalman filter.

It worth noticing here that, given the smoothness procedure used by numerical prediction
models, one could avoid KZ filtering the forecasts, restricting this only to observations. However, it
is the author’s belief that, by filtering both time series, their compatibility is further ensured. Note
also that for both filters the corresponding parameters are those defined in Section 3 where the
details of our tests are presented. The corresponding training period has been restricted to a
seven day interval, exploiting the ability of Kalman filters to easily adopt possible new conditions

as well as their limited need for background information.
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The above described procedure was applied to the six available buoys. The filters
performed well in all cases eliminating the major part of the systematic error, despite its type, and
leading to more accurate local forecasts. In Table 3 some statistical results for the area of interest
before and after the filters application are presented.

*x%x* Desired Location of Table 3 *******x*

In all cases, the bias has almost vanished, fulfilling the main goal of any Kalman type filter.
On the other hand, RMSE is significantly decreased and the MAPE, which gives the discrepancies of
the forecasts as a percentage of the observations, is reduced to less than the half of its initial
value. It is worth noting that such improvements have not been achieved by our group when using
only Kalman filters ([4, 6, 7]). The stride has been taken due to the combined used of Kalman with
KZ-filters that ensure the best adaptability of the time series in use to the Kalman algorithm. The
statistical results are graphically represented in Figures 6-8.
*¥**** Desired Location of Figures 6-8 ********
In order to further support the above arguments, the time series of three different cases
(buoys C, D, F) are presented in Figures 9-11. The improvement of the initial forecast by the
elimination of the systematic error is obvious.
***%* Desired Location of Figures 9-11 *****%**
In Figure 12, the added value obtained from the combined use of KZ and Kalman filters is clarified.
The instabilities produced by the use of Kalman filter only (circled) are eased by the prior

utilization of a KZ(5,5) smoothing filter.

5. Conclusions
A new methodology is proposed for the adaptation of the results of numerical wave

prediction models to local wave conditions. It is based on the combination of two independent
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statistical techniques: The Kolmogorov-Zurbenko and Kalman filters. The first transforms the time
series used - model direct outputs and corresponding observations - into a comparable mode.
Comparability is achieved by subtracting high variability which is normally present only in the
observations since the forecasts are already smoothed spatially and temporally by the model
itself. In a second step, the KZ-smoothed series are elaborated by a Kalman filter which may
identify and subtract possible existing systematic errors.

The proposed methodology was applied to an open sea area (south west coast of the
United States) and has been evaluated by means of six buoys. In all cases, a considerable reduction
of the systematic error was achieved no matter its form (under - or over - estimation). The
corresponding biases were practically vanished while variability indexes (Root Mean Square Error
and Mean Average Percentage Error) were also noticeably decreased.

It is worth noticing that a substantial part of the success of the methodology presented is
due to the presence of KZ filters. Without the latter the Kalman algorithm may produce serious
instabilities due to the different qualitative characteristics of the initial time series. It is the
author's belief that the proposed techniques may also give similar satisfactory results if applied to
other atmospheric or wave parameters like temperature, wind speed, mean wave period, etc.,

contributing to the improvement of local meteorological predictions.
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Figures and Tables

Figure 1. The area of interest and the locations of buoys used (A-F)

Buoy Lebel Lat Lon
A N 34.88 | W 120.87
B N 33.65 W 120.2
C N 33.75 | W 119.08
D N 33.22 | W119.88
E N 32.43 | W119.53
F N 32.5 W 118

Table 1. Buoy’s coordinates
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Observation Period Forecasting Period Observation Period Forecasting Period

(Day d) (Day d+1) (Day d) (Day d+1)
EEEE (model) mmmm (observations) I (Kalman)
2a. Available observations and WAM forecasts are 2b. The direct model outputs as well as the filtered
combined by the filters in order to reach forecasts are evaluated against next day
a new improved forecast for the next day observations

Figure 2. The operational run
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Figure 3. Direct model outputs and observations from buoys (A) and (E).
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Figure 4a. Direct model output and observations. Figure 4b. Instabilities are produced by the direct
The time series are of different characteristics. application of a Kalman filter.
Buoy A Buoy B Buoy C
Model Obs Model Obs Model Obs
Var Index 0.07 0.22 0.17 0.29 0.13 0.18
Buoy D Buoy E Buoy F Average
Model Obs Model Obs Model Obs Model Obs
Var Index 0.16 0.24 0.17 0.31 0.14 0.18 0.14 0.24

Table 2. Variability Index for the forecasted and observed values.

Significant Wave Heught [m)
|
A
)

Significant Wave Heught [m)

Time [hours) Time (hours)

—uohs —mod —ohs+kr

Figure 5. WAM forecasts and observations from buoys (A) and (E) after passing a (5,5)-KZ filter.
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Buoy A Buoy B Buoy C
Model + Model + Model +
Model Filters | Model Filters Model Filters
Bias 0.51 -0.08 0.13 -0.03 0.99 0.03
RMSE 0.74 0.63 0.74 0.72 1.12 0.44
MAPE 0.42 0.26 0.31 0.25 1.05 0.30
Buoy D Buoy E Buoy F Average
Model + Model + Model + Model +
Model | Filters | Model | Filters Model Filters | Model | Filters
Bias 0.56 0.002 0.36 -0.02 0.70 0.01 0.54 -0.01
RMSE 0.84 0.61 0.82 0.69 0.89 0.49 0.86 0.60
MAPE 0.43 0.21 0.38 0.23 0.63 0.23 0.54 0.25

Table 3. Statistics for all buoy locations before and after the use of the filters referring to all study period.
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Figure 6. Bias of WAM direct outputs and WAMH+Filters.
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Figure 7. Root Mean Square Error of WAM direct outputs and WAM+Filters.

19




1,05
100 -
war -
0,63
e
0,az 0,43
nan bl
31 0,30
0,26 0,25

4 0,21 0,23 0,23
020
0.00

Buoy A Buoy B Buoy C Buoy D Buoy E Buoy F
= WAM B WAM-+Filters

Figure 8. Mean Average Percentage Error of WAM direct outputs and WAMH+Filters.
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Figure 9. WAM direct outputs, KZ+Kalman improved forecasts and the corresponding observations from buoy C.
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Figure 10. WAM direct outputs, KZ+Kalman improved forecasts and the corresponding observations from buoy D.
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Figure 11. WAM direct outputs, KZ+Kalman improved forecasts and the corresponding observations from buoy F.

21



Significant Wave Height (m)

u B 12 15 A4 Al 4h 42

Time (hours)

——obs =——mod =—kalman —KZ+Kalman

Figure 12. WAM direct outputs (red line), Kalman filtered forecast (green line) and KZ+Kalman filtered forecasts

(purple line) against the corresponding observations (blue line) from buoy A.
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